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Abstract— Traffic flow prediction plays an important role in
ITS (Intelligent Transportation System). This task is challenging
due to the complex spatial and temporal correlations (e.g., the
constraints of road network and the law of dynamic change with
time). Existing work tried to solve this problem by exploiting a
variety of spatiotemporal models. However, we observe that more
semantic pair-wise correlations among possibly distant roads
are also critical for traffic flow prediction. To jointly model
the spatial, temporal, semantic correlations with various global
features in the road network, this paper proposes T-MGCN
(Temporal Multi-Graph Convolutional Network), a deep learn-
ing framework for traffic flow prediction. First, we identify
several kinds of semantic correlations, and encode the non-
Euclidean spatial correlations and heterogeneous semantic corre-
lations among roads into multiple graphs. These correlations are
then modeled by a multi-graph convolutional network. Second,
a recurrent neural network is utilized to learn dynamic patterns
of traffic flow to capture the temporal correlations. Third, a fully
connected neural network is utilized to fuse the spatiotemporal
correlations with global features. We evaluate T-MGCN on
two real-world traffic datasets and observe improvement by
approximately 3% to 6% as compared to the state-of-the-art
baseline.

Index Terms— Traffic flow prediction, graph convolutional
network, graph fusion.

I. INTRODUCTION

AS ONE of the key issues in ITS (Intelligent Trans-
portation System), traffic flow prediction is a process

of analyzing traffic conditions (e.g., speed, flow, and density)
on urban road network, mining traffic patterns, and predicting
the future traffic conditions on the road network. Traffic flow
prediction could enable a variety of intelligent applications.
For example, it could help private drivers for route planning
and departure time scheduling [1] and help traffic manager to
improve traffic efficiency and safety [2].

However, traffic flow prediction is a challenging task due
to the complex spatial, temporal, and semantic correlations.
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(i) Spatial correlation. The urban traffic flow is dominated by
the topological structure of the underlying road network. It is
intuitive that the traffic flow of a road would greatly impact
that of its adjacent roads. Moreover, the spatial correlation
is directional. For example, the future traffic conditions are
affected more by the downstream traffic than the upstream
traffic [3]. (ii) Temporal correlation. The traffic conditions
change dynamically over time. The temporal correlation can
be reflected in closeness and periodicity [4]. Closeness means
that traffic conditions of recent time slots are more relevant
than those of distant time slots. Periodicity means that traffic
conditions show periodic change patterns over certain time
intervals. (iii) Semantic correlation. Distant roads may also
have certain relevance with each other due to some latent
semantic correlations. For example, roads in urban areas with
similar functionality (e.g., residential areas and commercial
areas) usually have similar traffic patterns.

The state-of-the-art methods apply data-driven approach
for traffic flow prediction. Early methods only consider the
temporal correlations, including the Kalman filtering based
methods [5], the ARIMA (Auto-Regressive Integrated Mov-
ing Average) based methods [6], the SVR (Support Vector
Regression) model based methods [7], the Bayesian model
based methods [8], and deep learning based methods [9]–[12].
However, these methods ignore the spatial correlations, so that
they cannot optimize the prediction performance for the entire
road network. To characterize the spatial correlations, some
works apply CNN (Convolutional Neural Network) for spatial
modeling [4], [13]–[15]. However, CNN is originally designed
for spatial structure in Euclidean space (e.g., 2D images and
regular grids), so it cannot fully adapt to the complex topologi-
cal structure of a road network. Aiming at this problem, several
recent works study GCN (Graph Convolutional Network) for
spatial modeling in road networks [3], [16], [17]. However,
these methods only consider the topological relations between
roads to build the graphs, but ignore all other semantic factors
that could measure the correlations between roads (e.g., traffic
behaviors and local functionality).

In this paper, we propose T-MGCN (Temporal Multi-Graph
Convolutional Network), a unified deep learning framework,
which integrates spatial, temporal, and semantic correlations
with various global features for traffic flow prediction in a road
network. The contributions of this paper are as follows.

(1) We identify two kinds of semantic correlations among
roads (i.e., the historical traffic pattern correlation and
the local area functionality similarity) and encode the
heterogeneous spatial and semantic correlations using
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multiple graphs. Then, we propose a multi-graph con-
volutional network to model and fuse these graphs.

(2) We identify a variety of global features (i.e., time
feature, periodicity feature, and event feature) and design
a deep neural network to jointly model the spatial,
semantic, temporal correlations, and the global features
with multiple layers. Specifically, we stack a convolu-
tional layer based on multi-graph convolutional network,
a recurrent layer based on GRU (Gated Recurrent Unit),
and an output layer based on fully connected neural
network.

(3) We conduct extensive experiments using two real-world
traffic datasets. The results show that T-MGCN reduces
the prediction error by approximately 3% to 6% as
compared to the best baseline.

The remainder of this paper is organized as follows.
Section II reviews the related work. Section III details the
proposed method. Section IV reports the experiment results.
Section V concludes the paper.

II. RELATED WORK

Traffic flow prediction is one of the major research issues
in ITS. Some traditional traffic flow prediction methods use
knowledge-driven approach, i.e., they analyze the physical
properties of the traffic system and build models through
traffic simulation and prior knowledge. The representative
methods include the queuing theory model [18], the cell
transmission model [19], and the microscopic fundamental
diagram model [20]. However, traffic flow is often influenced
by a variety of factors, so it is difficult to accurately simulate.
In addition, these models usually require parameters that are
difficult to obtain in real-world environment.

With the development of traffic data collection devices,
data-driven traffic flow prediction methods have received con-
siderable attention, where statistical models, shallow machine
learning models, and deep learning models are three represen-
tative categories. Statistical models predict future values based
on previously observed values through time-series analysis,
e.g., historical average model [21], Kalman filtering model [5],
ARIMA model [6] and its variations [22], [23]. However,
statistical models typically rely on linear assumption, which
cannot reflect the non-linear characteristics of traffic flow.
Meanwhile, shallow machine learning methods can learn
non-linear regularity from traffic data and external factors,
yielding better traffic flow prediction results. For example,
SVR model [7], Bayesian model [8], and k-nearest neighbor
model [24] are mostly exploited methods. However, the perfor-
mance of shallow machine learning methods heavily depends
on the manually designed features. Thus, they usually cannot
yield the best outcomes for prediction tasks with sophisticated
regularity and complicated factors.

More recently, deep learning models have shown their
superior capability for traffic flow prediction. The deep learn-
ing models could automatically extract features that capture
the correlations of the data, e.g., FNN (Feed-forward Neural
Network) [9], DBN (Deep Belief Network) [10], and SAE
(Stacked Auto Encoder) [11]. Since traffic data are typically

time-series data, it is crucial to capture the temporal corre-
lations. Thus, RNN (Recurrent Neural Network), e.g., LSTM
(Long Short-Term Memory) and GRU, is widely adopted as
an essential component of traffic flow prediction models to
predict a variety of traffic conditions (e.g., traffic speed [25],
traffic flow [26], and travel time [27]). However, these methods
ignore the spatial correlations, so that the traffic flow predic-
tion is not constrained by the structure of the road network.
Therefore, they often fail to achieve the best results for the
entire road network.

Aiming at this problem, many researchers exploited CNN to
characterize spatial correlations. For example, Wu et al. [13]
combined a 1-dimension CNN and two LSTMs for short-
term traffic flow prediction. Yu et al. [14] converted network-
wide traffic speeds into a series of images, and then input
them into a model that inherits the advantages of CNN and
LSTM. Wang et al. [15] proposed a deep learning method
called eRCNN for traffic speed prediction. It leverages CNN
to capture the nearby road segments to improve the predictive
accuracy. Zhang et al. [4] designed an end-to-end model called
ST-ResNet, which employs residual learning to build very deep
CNNs, to predict the citywide crowd flows. These methods
have to transform traffic network into regular grids, because
CNN is originally designed for spatial structure in Euclidean
space. However, traffic data are time-series data distributed
over a road network, whose structure is non-Euclidean. As a
result, CNNs cannot fully capture the spatial correlations of
the traffic data.

To address this limitation, several recent studies apply GCN
for spatial modeling in road networks. Generally, GCNs gen-
eralize the convolution operation to non-Euclidean domains
based on the spectral graph theory [28]–[30]. For example,
Li et al. [3] proposed a deep learning framework called
DCRNN for traffic flow prediction. It captures the spatial
correlations using bidirectional random walks on the graph and
the temporal correlations using the encoder-decoder architec-
ture. Zhao et al. [16] proposed T-GCN, which uses GCN to
learn the topological structure of the road network and GRU
to learn the dynamic changes of traffic flow. Yu et al. [17]
used completely convolutional structures on traffic data to
capture both the spatial and temporal correlations based on
GCNs. Zhang et al. [39] integrated GCN into a sequence-to-
sequence framework for multistep speed prediction. However,
these studies only consider the topological structure of the
road network to build the graphs. Actually, more semantic
correlations between urban roads could be exploited from
various aspects (e.g., historical behaviors, local area func-
tionality, and road type). Effectively capturing these semantic
correlations could further improve the prediction performance.
Furthermore, GCN has also been applied in a variety of
spatiotemporal data prediction tasks, e.g., crowd flow predic-
tion [40], passenger demand prediction [41].

More recently, Geng et al. [38] proposed a multi-graph
convolutional network based method for ride-hailing demand
prediction. Chai et al. [42] proposed a multi-graph con-
volutional network based method for bike flow prediction.
However, they build the spatial correlations in a grid space,
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Fig. 1. The architecture of T-MGCN.

which is not suitable for traffic flow prediction in a road
network.

III. METHOD

A. Preliminary

Definition 1 (Road Graph): A road graph is represented
as a weighted graph G = (V , E, W ), where each node vi

represents a road and each edge ei j represents the correlation
between vi and v j . The weight of edge ei j represents the
correlation strength between vi and v j . A larger weight
means that the two roads have higher correlation. In this
paper, we build road graphs from three aspects, i.e., road
network topological structure (represented by Gr and Gw),
traffic pattern correlations (represented by G p), and local area
functionality similarities (represented by G f ), which will be
elaborated in Section III.C.

Definition 2 (Traffic Condition Sample): We denote the
traffic condition signal (e.g., speed and volume) on the road
network at time t as an N-dimensional vector xt , where N
is the number of roads. Then, a traffic condition sample is
represented as St = (Int , Outt ), where the input part Int =
[xt−W−1, . . . , xt−1, xt ] is a sequence of W historical traffic
condition signals, the output part Outt = xt+h is the traffic
condition signal at time t + h.

1) Problem: The traffic flow prediction problem can be
considered as learning from a large number of traffic condition
samples to obtain a function f that maps W historical traffic
condition signals of the current time t to the future traffic
condition signal at time t +h, on the premise of Gr , Gw , G p,
and G f , as shown in Equation 1, where x̃t+h is the predicted
traffic condition signal at time t + h.

x̃t+h = f
(
Gr , Gw, G p, G f ; (xt−W−1, · · · , xt−1, xt )

)
(1)

2) Architecture: Fig. 1 shows the architecture of T-MGCN
that consists of four layers, i.e., an input layer, a convolutional
layer, a recurrent layer, and an output layer. First, given a
traffic condition sample St , the input layer uses a sliding

window to process Int to get a sequence of segments. Second,
for each segment, the convolutional layer uses four individual
GCNs (i.e., GCNr , GCNw , GCNp , and GCN f ) to perform
the convolution operation considering the four road graphs
(i.e., Gr , Gw , G p, and G f ), and fuse the results to get
the feature matrix. Third, the recurrent layer applies GRU
to process the sequence of feature matrices obtained from
the sequence of segments. Finally, the output layer fuses the
feature matrix with the global features and gets prediction
result through a fully connected neural network.

B. The Input Layer

Given a traffic condition sample St , its input part Int could
be treated as an N×W matrix, where N is the number of roads
and W is the number of historical traffic condition signals.
We use a sliding window with window size w and step size d
to process Int . Then, we will obtain a sequence of K segments
(i.e., S1

t , S2
t , · · · , SK

t ), each of which is an N × w matrix.
The reason of using such a processing strategy is as follows.

First, each segment should contain multiple traffic condition
signals (w > 1). It is because that time-series data have
closeness feature (i.e., data in the neighboring time slots have
strong local interactions) [4] and these local interactions in
the neighboring time slots are captured by the convolutional
layer for each segment separately. Thus, if w = 1, the local
interactions would be ignored. Second, the input part of a
traffic condition sample should be split into multiple segments
(i.e., w < W ), to facilitate the recurrent layer to capture the
temporal dynamics. If w = W , the temporal dynamics would
be ignored.

C. The Convolutional Layer

Convolution operation could well capture local dependency
and maintain shift invariance, so it is an effective way to
capture spatial correlations. However, the standard CNNs can
only be used in Euclidean space (e.g., an image, a space
with regular grids, etc.) [29], and thus it cannot adapt to the
complex topological structure of the road network. Since the
correlations between roads are defined in the form of graphs,
we apply GCN to perform the convolution operation on road
network.

1) Graph Construction: Graph construction is the key step
for GCNs. If the generated graphs could not well encode
the correlations between nodes, it would not help the model
learning and might even degrade the prediction performance.
In general, we assign larger weights to edges between roads
with stronger correlations from different aspects. Specifically,
we build four road graphs (i.e., Gr , Gw , G p , and G f ), which
are detailed as follows.

a) Topological graph Gr : The topological structure of a
road network can be represented as a directed graph Gr =
(V , E, Wr ), where the weight wr (i, j) of edge ei j is the
reciprocal of the number of hops it takes at least to travel
from road vi to road v j . Thus, roads that are closer in the
road network will be correlated with higher weights. Then, the
adjacent matrix Xr of Gr can be represented as Equation 2.
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Fig. 2. An example of the topological graph of a road network.

Fig. 2 gives an example of a toy road network and the weight
matrix of its topological structure.

Xr =

⎛
⎜⎜⎜⎝

0 wr (1, 2) · · · wr (1, N)
wr (2, 1) 0 · · · wr (2, N)

...
...

. . .
...

wr (N, 1) wr (N, 2) · · · 0

⎞
⎟⎟⎟⎠ (2)

b) Weighted topological graph Gw: The topological
graph Gr only considers the number of intermediate links from
road vi to v j . However, the lengths of those links might also
affect the correlation of vi and v j . Therefore, we define the
weighted topological graph Gw = (V , E, Ww). The weight
ww(i, j) of edge ei j is calculated as Equation 3, where len(vk)
calculates the length of path vk (or road vk). Then, the adjacent
matrix Xw of Gw can be represented as Equation 4.

ww(i, j) = median {len(vk)|vk ∈ V }
len(the shortest path f rom vi to v j )

(3)

Xw =

⎛
⎜⎜⎜⎝

0 ww(1, 2) · · · ww(1, N)
ww(2, 1) 0 · · · ww(2, N)

...
...

. . .
...

ww(N, 1) ww(N, 2) · · · 0

⎞
⎟⎟⎟⎠

(4)

c) Traffic pattern graph G p: Roads with similar traffic
patterns may not necessarily be close in space. With the
historical traffic condition data of each road, we exploit the
inter-road correlations by directly measuring the similarity
of the historical traffic condition patterns of each road pair.
Specifically, the traffic pattern graph is represented as G p =
(V , E, Wp). The weight wp(i, j) of edge ei j is the similarity
between the historical condition pattern of road vi and that of
road v j , which is calculated as follows.

First, given a road vi , we use the average historical weekly
traffic conditions svi as its traffic pattern, where svi is a
sequence and svi [ j ] is the average traffic condition at the
j -th time slot of a week over the historical traffic condition
data of vi . Second, given two roads vi and v j , we use
DTW (Dynamic Time Warping) [31] to calculate the distance
between svi and sv j , denoted as dtw(i , j). Finally, we trans-
form the distance measurement to a similarity measurement
based on Equation 5, which is treated as the weight wp(i, j).
In the equation, α is used to control the decay rate of the
distance, which should be set according to the range of the
concerned traffic condition. Then, the adjacent matrix XpG p

can be represented as Equation 6.

wp(i, j) = e−α×dtw(i, j ) (5)

Xp =

⎛
⎜⎜⎜⎝

0 wp(1, 2) · · · wp(1, N)
wp(2, 1) 0 · · · wp(2, N)

...
...

. . .
...

wp(N, 1) wp(N, 2) · · · 0

⎞
⎟⎟⎟⎠

(6)

d) Functionality graph G f : Roads in urban areas sharing
similar functionality usually have similar traffic patterns, e.g.,
industrial areas may have heavy traffic flows in rush hours of
weekdays, and downtown areas may have heavy traffic flows
on weekends. The functionality graph is represented as G f =
(V , E, W f ). The weight w f (i, j) of edge ei j is the similarity
of the functionality of the local area of road vi and that of
road v j , which is calculated as follows.

First, it has been proven in the previous studies that POI
(Point Of Interest) distribution can measure the functionality
of an urban area [43]. Given a road vi , from the POIs
around vi , we calculate the density of POIs of the following
eight categories, i.e., Residence, Work (e.g., company, office
building, etc.), Commerce (e.g., mall, shop, etc.), Restaurant,
School, Transportation (e.g., railway station, metro station,
etc.), Entertainment (e.g., theatre, bar, etc.), and Scenery
(e.g., park, lake, etc.) to form a feature vector pvi , where
pvi [ j ] denotes the density of POI category j around road vi

and is calculated as Equation 7. In the equation, mi
j is the

number of POIs of category j around road vi , mi is the total
number of POIs around vi , M j is the number of POIs of
category j in the POI dataset, and M is the total number of
POIs in the POI dataset. The equation is designed by referring
to TF-IDF in the natural language processing domain, which
assigns a higher weight for POI category with less overall
number. Second, given two roads vi and v j , we use cosine
similarity to measure the similarity between pvi and pv j ,
which is treated as the weight w f (i, j). Then, the adjacent
matrix X f G f can be represented as Equation 8.

pvi [ j ] = mi
j

mi
× log

M

M j
(7)

X f =

⎛
⎜⎜⎜⎝

0 w f (1, 2) · · · w f (1, N)
w f (2, 1) 0 · · · w f (2, N)

...
...

. . .
...

w f (N, 1) w f (N, 2) · · · 0

⎞
⎟⎟⎟⎠ (8)

2) Multi-Graph Convolutional Networks: We utilize the
GCN in [30] to perform the convolution operation to capture
the interactions between nodes. Each road graph is input to
an individual GCN. The propagation rule of GCN can be
expressed as Equation 9, where X̃ = X + IN is the adjacent
matrix of a road graph with added self-connections, and IN is
an identity matrix. Here, X can be Xr , Xw, Xp , or X f . D̃ is a
diagonal matrix such that D̃[i, i ] = ∑

j X̃[i, j ]. W(l) is a layer-
specific trainable weight matrix (e.g., W(0) and W(1) are the
weight matrices of the first and second layers, respectively),
and we can stack multiple layers to model higher order
neighborhood interactions in the graph. The original input to
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Fig. 3. The architecture of the recurrent layer.

the GCN is H(0), which is a segment represented by an N ×w
matrix as discussed in Section III.B, and ReLU(·) denotes
the ReLU activation function. The propagation rule can be
considered as a spectral filter in the Fourier domain. Each
segment is input to four GCNs (i.e., GCNr , GCNw , GCNp , and
GCN f ), together with the corresponding road graphs (i.e., Gr ,
Gw, G p , and G f ), resulting in four feature matrices, denoted
as Hr , Hw, Hp, and H f . In this paper, only one layer is used
in the GCN.

H(l+1) = ReLU(D̃− 1
2 X̃D̃

− 1
2 H(l)W(l)) (9)

Next, we merge the feature matrices Hr , Hw, Hp, and
H f into one feature matrix Y using a parametric matrix
based fusion method in Equation 10 and 11, where ◦ is the
element-wise product, Wr , Ww , Wp , and W f are the learnable
parameters that adjust the weights of Hr , Hw, Hp, and H f ,
respectively. The softmax operation is used to normalize the
parametric matrices.

W ′
r , W ′

w, W ′
p, W ′

f = so f tmax
(
Wr , Ww, Wp, W f

)
(10)

Y = W ′
r ◦ Hr + W ′

w ◦ Hw + W ′
p ◦ Hp

+ W ′
f ◦ H f (11)

D. The Recurrent Layer

The recurrent layer is utilized to capture the temporal
correlations in the sequence of segments represented by the
sequence of feature matrices. In this paper, GRU is used to
implement the recurrent layer. GRU is a variant of RNN, where
the outputs of the previous units are a part of the input to
the current unit. This mechanism allows the information to
be passed step by step, and thus RNN is capable of capturing
temporal correlations. GRU is proposed to address the problem
of vanishing or exploding of gradient, so that it could better
learn long-term temporal correlations.

We choose a stacked GRU structure with two layers, which
is an efficient way to increase model capacity [32]. We apply
dropout between GRU layers for regularization. As shown
in Fig. 3, given a traffic condition sample St split into
K segments (i.e., S1

t , S2
t , · · · , SK

t ), the convolution layer in

Section III.C is applied to each segment, producing a sequence
of feature matrices Y1

t , Y2
t , · · · , YK

t . Then, these feature matri-
ces are fed into the recurrent layer chronologically. Finally,
we take the output feature matrix of the last hidden state
HZK

t as the output of the recurrent layer, denoted as RZt

(i.e., RZt = HZK
t ).

E. The Output Layer

The output of the recurrent layer RZt encodes the spatial
correlations of the topological structure of road network, the
inter-road semantic correlations, and the temporal correlations
of closeness. However, there are other global features that
can affect the traffic conditions (e.g., time and event). Thus,
we extract the following global features before outputting the
final feature matrix.

1) Time Feature: Given a traffic condition sample St , we
consider time of day, day of week, and holiday event (i.e., hol-
iday or normal day) as time feature, since they can affect urban
traffic flows [4]. We extract the time feature at future time t+h,
for which the traffic condition is predicted. We denote the time
feature matrix of the road network for St as TZt .

2) Periodicity Feature: Urban traffic flow shows a strong
periodicity (e.g., traffic conditions during rush hours are
usually similar on consecutive workdays) [37]. However,
the recurrent layer could only capture short-term periodicity,
since W (i.e., the length of the input part of a traffic condition
sample) cannot be too long. This is because that a too long
RNN is too difficult to train and the gradient vanishing of too
long sequence also weakens the effect of periodicity. Thus,
given a traffic condition sample St , we consider the traffic
conditions at the same time in the last day t − nd and the
same time in the last week t −nw as the long-term periodicity
features, where nd and nw are the durations of a day and
a week, respectively. In addition, instead of using a single
traffic condition signal at t − nd and t − nw, we consider a
small window of traffic condition signals centered at t − nd

and t −nw. The reason is that the traffic conditions are usually
not strictly periodic [33]. For example, although almost all the
weekdays have morning rush hours, the traffic flow peak could
come at different time slots on each morning. We denote the
periodicity feature matrix of the road network for St as PZt ,
which is a N × (2 × wp) matrix. Here, wp is the number of
traffic condition signals in the small window.

3) Event Feature: In some cases, an event (e.g., a traffic
accident and a festival gathering) would cause the traffic
pattern to change sharply in a few hours around the target
area. However, the presence of such cases is very infrequent
and it is almost impossible to capture the regularity by only
considering the traffic condition data [35]. To address this
issue, we exploit the textual information with location and
time attributes shared in some event publication websites
(e.g., location-based social networks and official websites of
public facilities) to identify the events and capture their effect
on the future traffic patterns based on a deep neural network.
Specifically, given a traffic condition sample St , we aggregate
the textual snippets published during the period of the input
part Int near each road vi to form a document D(t, i), and
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Fig. 4. An overview of the datasets: (a) the road distribution of HZJTD;
(b) the sensor distribution of PEMSD10.

then use TextCNN [36] to extract a feature vector from D(t, i)
through a pre-trained word embedding layer, a convolutional
layer, a max-over-time pooling layer, and a fully connected
layer. After that, we combine all the extracted feature vectors
to form the event feature matrix of the road network for St ,
denoted as EZt .

Second, we fuse RZt , TZt , PZt , and EZt . To be specific,
we concatenate RZt , TZt , PZt , and EZt into a long feature
matrix Zt = RZt⊕TZt⊕PZt⊕EZt , and then stack two fully-
connected layers upon Zt , where the first layer can be viewed
as an embedding layer and the second layer is used to ensure
that the output matrix Z̃t has the same shape as Xt . Note
that the global features are optional and we could choose
any of them to form the final Zt according to the data
availability. Finally, we use sigmoid as the activation function
upon Z̃t to output the predicted traffic condition signal at time
t + h, denoted as x̃t+h . Our model is trained to minimize the
RMSE (Root Mean Square Error) between the predicted traffic
condition signal and the true traffic condition signal.

IV. EXPERIMENT

A. Experiment Setup

1) Datasets: We evaluate our method based on two real-
world traffic datasets, i.e., HZJTD and PEMSD10.

HZJTD was collected by Hangzhou Integrated Transporta-
tion Research Center.1 It was sampled from 202 roads in the
major urban areas of Hangzhou city by loop detectors. The
time period of HZJTD is from 16th October, 2013 to 3rd
October, 2014. HZJTD contains traffic conditions including
traffic speed and traffic congestion index. Traffic speed is taken
as the traffic condition to be predicted. We aggregate traffic
speed on the roads every 15 minutes. Finally, HZJTD contains
30353 records for each road. The topological structure of the
road network of Hangzhou city was manually constructed
(as shown in Fig. 4(a)). Note that a two-way road in the
figure is treated as two distinct roads. The POIs in Hangzhou
city were collected based on Baidu Map API.2

PEMSD10 was collected by California Department of
Transportation.3 There are totally 39,000 sensors deployed
on the freeway system across all major metropolitan areas

1http://www.hzjtydzs.com/index.html
2http://lbsyun.baidu.com/
3http:// http://pems.dot.ca.gov/

Fig. 5. An illustration of the POI projection.

of the state of California. We randomly select 608 sensors
among District 10 of California as data sources (as shown
in Fig. 4(b)). The time period of PEMSD10 is from 1st
January, 2018 to 31st March, 2018. The dataset is also
aggregated into 15 minutes interval and traffic speed is taken
as the traffic condition to be predicted. Finally, PEMSD10
contains 8640 records for each sensor. The POIs in California
were collected based on Google Map API.4 There are two
things needed to be noted. First, the sensors and roads are not
corresponding one to one in PEMSD10 (e.g., there may be
multiple sensors deployed in the same road), so we ignore the
topological graph and build the weighted topological graph
by using a thresholded Gaussian kernel [3], i.e., the weight
ww(i , j) between sensor vi and v j is calculated based on
Equation 12, where dist(vi , v j ) denotes the distance between
sensor vi and v j , σ is the standard deviation of distances, and
κ is the distance threshold. Second, PEMSD10 also collects
incident reports from Traffic Incident Information Page.5 An
incident report contains information about the date, time,
location, and textual description of the incidents.

wr (i, j) =
⎧⎨
⎩e− dist(vi ,v j )2

σ2 if dist(vi , v j ) < κ

0 otherwise
(12)

2) POI Collection: First, both Baidu Map API and Google
Map API do not allow to query all the POIs within an area for
once, and they only accept a keyword and a central location as
input and return a pre-defined number of POIs satisfying the
keyword around the central location. Thus, we collected POIs
based on a move-and-scan strategy, i.e., querying POIs around
a central location multiple times by providing different POI
categories as keywords, and then moving the central location to
the next nearby location and repeating the query step. Second,
the POIs are projected into a road as Fig. 5. A road vi is
represented by a polyline. For each segment si j of vi , we
draw a rectangle that wraps around si j (the orthogonal distance
is dr ). Then, all the POIs within these rectangles are treated
as around vi to build the functionality graph G f .

3) Preprocessing: First, we use linear interpolation method
to fill the missing values of traffic speed data. Second, we use
Min-Max normalization method to scale the traffic speed
values into the range [0, 1] before inputting into the model.
In the evaluation, we re-scale the predicted traffic speed value
back to normal to compare with the ground-truth value. Third,
since the time features are all categorical variables, we use
one-hot encoding to form binary feature vectors for them.

4http://maps.google.com/
5http://cad.chp.ca.gov/
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Fig. 6. The effect of parameter w: (a) the effect on RMSE; (b) the effect
on MAPE.

The periodicity features are also normalized into the range
[0, 1] based on Min-Max normalization method.

4) Parameter Setting: The default values of the parameters
are set as follows. The number of roads is N = 202 for HZJTD
and N = 608 for PEMSD10. We set the length of the input
part of a traffic condition sample W = 96 (i.e., 24 hours),
the decay rate of the DTW distance α = 0.1, the orthogonal
distance to project the POIs dr = 1 km, the number of
traffic condition signals in the small window of the periodicity
features wp = 4 (i.e., one hour), and κ = 2 km. For
TextCNN, the dimension of the word embeddings is 100 and
the dimension of the outputted feature vectors is 50. In the
experiment, we employed a 5-fold cross validation strategy.
Specifically, the traffic condition samples are chronologically
split into five sets, where each set is used as testing set once
(the other four sets are used as training sets) and the average
performance is reported. The deep neural network is trained
using the Adam optimizer. We set the learning rate as 0.001,
the batch size as 32, and the training epoch as 2000.

5) Evaluation Metric: We measure the performance of
the prediction methods based on RMSE and MAPE (Mean
Absolute Percentage Error) as Equations 13 and 14, where X̃i

and Xi are the predicted value and the ground-truth value, and
n is the number of all predicted values.

RM SE =
√

1

n

∑n

i=1

(
Xi − X̃i

)2
(13)

M AP E = 1

n

∑n

i=1

∣∣∣∣∣
Xi − X̃i

Xi

∣∣∣∣∣ × 100% (14)

B. Experiment 1: Parameter Tuning

In this experiment, we investigate the effect of parameter
w (i.e., the size of the sliding window used to segment the
input, as discussed in Section III.B). The length of the input
is fixed as W = 96 (i.e., 24 hours), the step size d = w/2, and
we increase w from 2 (i.e., 30 minutes) to 16 (i.e., 4 hours).
As shown in Fig. 6, when w increases, both RMSE and
MAPE show a decreasing phase and then an increasing phase
is followed. On one hand, each segment obtained by the
sliding window is processed by an individual GCN. Thus,
if w is too small, it is difficult for the GCNs to capture the
local interactions in the neighboring time slots. On the other
hand, when w is too large, the number of segments would be
significantly reduced, so it is difficult for the RNN to capture
the temporal correlations among segments. To the end, we set
w = 8 in the following experiments.

C. Experiment 2: Effect of Components

In the first experiment, we try to evaluate the effectiveness
of the key components of T-MGCN, i.e., the four road graphs
(Section III.C). Specifically, we compare the performance of
the following three variants of T-MGCN.

• T-RGCN: It performs the graph convolution operation
using only Gr , the topological graph.

• T-WGCB: It performs the graph convolution operation
using only Gw, the weighted topological graph.

• T-PGCN: It performs the graph convolution operation
using only G p , the traffic pattern graph.

• T-FGCN: It performs the graph convolution operation
using only G f , the functionality graph.

The four variants work without the GCN fusion step, i.e.,
Y = Hr for T-RGCN, Y = Hw for T-WGCN, Y = Hp

for T-PGCN, and Y = H f for T-FGCN (Section III.C). The
experiment results are shown in Table I. First, T-MGCN
outperforms all the other variants. It means that all the four
road graphs contribute to the final results. Second, besides
T-MGCN, T-PGCN has the best overall performance. It shows
that the historical traffic pattern has a strong indication to the
future traffic condition. Third, T-FGCN has the worst overall
performance. One potential cause is that the POIs collected by
Baidu Map API or Google Map API are represented equally as
points. Actually, POIs with different sizes might have different
degrees of influence on traffic conditions (e.g., a big mall
usually has a stronger influence on traffic conditions than a
small shop does).

In the second experiment, we try to investigate the effec-
tiveness of the global features, i.e., the time features, the
periodicity features, and the event features (Section III.E).
Specifically, we compare the performance of the following
three variants of T-MGCN.

• T-MGCN-Time: It considers only the time features in the
output layer (i.e., Zt = RZt⊕TZt ).

• T-MGCN-Periodicity: It considers only the periodicity
features in the output layer (i.e., Zt = RZt⊕PZt ).

• T-MGCN-Event: It considers only the event features in
the output layer (i.e., Zt = RZt⊕EZt ).

• T-MGCN-None: All the global features are not consid-
ered in the output layer (i.e., Zt = RZt ).

The experiment results are shown in Table II. Note that
only PEMSD10 has event features. First, T-MGCN has the
best overall performance and T-MGCN-None has the worst.
It demonstrates the effectiveness of the global features.
Second, T-MGCN-Periodicity outperforms T-MGCN-Time,
and it has almost the same performance as T-MGCN. It shows
that the periodicity feature is the most effective among all
the global features. This result is in accordance with many
existing works that urban traffic flow usually has a strong
periodicity [4], [13], [33], [37]. Third, T-MGCN-Event has
only a trivial advantage over T-MGCN-None. By analyzing
the experiment data, we found that the events (e.g., traffic
accidents) had very limited impact on the future traffic flow
in PEMSD10. It might be because that the car density in
California is relatively low, so an event would not be likely to
cause a heavy traffic congestion.
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TABLE I

THE EVALUATION OF THE ROAD GRAPHS

TABLE II

THE EVALUATION OF THE ADDITIONAL FEATURES

D. Experiment 3: Evaluation of Different Conditions

In this experiment, we try to investigate the performance of
T-MGCN under different conditions (e.g., different time spans,
different road types). Specifically, we evaluate T-MGCN under
the following seven conditions. The prediction horizon is set
as 5 hours.

• T-MGCN-RH: It refers to the performance of T-MGCN
during peak hours (i.e., 7:00-9:00 and 16:30-18:30).

• T-MGCN-NP: It refers to the performance of T-MGCN
during non-peak hours.

• T-MGCN-WD: It refers to the performance of T-MGCN
on weekdays.

• T-MGCN-HD: It refers to the performance of T-MGCN
on holidays.

• T-MGCN-ER: It refers to the performance of T-MGCN
on urban expressways.

• T-MGCN-AR: It refers to the performance of T-MGCN
on arterial roads.

• T-MGCN-SR: It refers to the performance of T-MGCN
on roads in scenic areas.

The experiment results are shown in Fig. 7. Note that there
are only freeways involved in PEMSD10, so T-MGCN-ER, T-
MGCN-AR, and T-MGCN-SR are only evaluated on HZJTD.
It can be seen that the experiment results on the two datasets
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Fig. 7. The evaluation of T-MGCN under different conditions: (a) RMSE;
(b) MAPE.

are consistent with each other. The performance is better under
“normal” conditions (i.e., on non-peak hours, weekdays, urban
expressways, and arterial roads). It is because that the traffic
flow patterns are more unstable under “abnormal” conditions
(i.e., on peak hours, holidays, and roads in scenic areas).

E. Experiment 4: Comparison With Baselines

To evaluate the competitive performance of the proposed
method (i.e., T-MGCN), we compare it with the following
baselines. In these baselines, HA and ARIMA have not con-
sidered the global features, while SVR, FNN, LSTM, CLTFP,
T-GCN, GAT, and DCRNN have considered the global fea-
tures. All the baselines have been optimized to output their
best performance.

HA: It refers to the historical average model [21], which
views the traffic speed as a strictly periodic process, and uses
the average of previous periods as the prediction. In this paper,
the period is set as one week, and thus the prediction is the
average traffic speed of the same time in previous weeks.

ARIMA: It refers to the standard ARIMA model [6].
SVR: It trains the traffic flow prediction model based on the

SVR algorithm [7]. Here, we use the linear kernel.
FNN: It trains the traffic flow prediction model based on

the feed-forward neural network [9]. Here, we use two hidden
layers. The first hidden layer contains 64 units and the second
hidden layer contains 32 units.

LSTM: It refers to the method in [25], which uses the LSTM
model for traffic flow prediction. Here, we stack two LSTM
layers, both of which contain 32 units.

CLTFP: It refers to the method in [13], which com-
bines CNN and LSTM for traffic flow prediction. It uses a
1-dimensional CNN to capture the spatial correlations, and
then uses two LSTMs to mine the temporal correlations.

T-GCN: It refers to the method in [16], which combines
GCN and GRU for traffic flow prediction. It performs the
graph convolution operation considering only the topological
graph.

GAT: It is similar with T-GCN, but it utilizes a cutting-edge
graph neural network in [34], instead of the GCN in T-GCN.

DCRNN: It refers to the method in [3], which models the
traffic speed as a diffusion process on a graph and proposes
a deep learning framework for traffic flow prediction by
considering both spatial and temporal correlations.

The results are shown in Table III, and the following tenden-
cies could be discerned from the results. First, deep learning

Fig. 8. A case study of traffic flow prediction: (a) prediction by T-MGCN;
(b) prediction by T-GCN; (c) prediction by CLTFP; (d) prediction by FNN.

based methods (including FNN, LSTM, CLTFP, T-GCN, GAT,
DCRNN, and T-MGCN) have a much better performance
than traditional methods (including HA, ARIMA, and SVR).
It shows that deep learning based methods can better capture
the non-linear spatiotemporal correlations. Second, the recur-
rent deep learning based methods (including LSTM, CLTFP,
T-GCN, GAT, DCRNN, and T-MGCN) outperform FNN.
It indicates that traffic flow has a strong temporal correlation,
which could not be ignored. Third, the spatiotemporal deep
learning based methods (including CLTFP, T-GCN, GAT,
DCRNN, and T-MGCN) outperform LSTM. It demonstrates
the effectiveness of spatial correlation in traffic flow prediction.
Fourth, the graph deep learning based methods (including
T-GCN, GAT, DCRNN, and T-MGCN) outperform CLTFP.
It shows that graphs can better model the spatial and semantic
correlations in road network than CNNs. Fifth, all the methods
behave much better on PEMSD10 than that on HZJTD. The
reasons might be as follows. PEMSD10 was collected from
freeways and HZJTD was collected from various types of
urban roads (i.e., urban expressways, arterial roads, and roads
in scenic areas). Thus, the traffic condition patterns in HZJTD
would be much more complex due to a variety of urban events
(e.g., traffic congestion and traffic light). Finally, T-MGCN has
the best performance in both datasets. It reduces the prediction
error by approximately 3% to 6% as compared to the best
baseline. It shows that it could achieve a better performance
by integrating various correlations (i.e., spatial, temporal, and
semantic correlations) and global features (i.e., time, period-
icity, and event features) jointly in T-MGCN.

F. Experiment 5: Case Study

In this section, we conduct a case study to intuitively show
the performance of T-MGCN. We select three adjacent roads in
the HZJTD dataset and plot the traffic flow prediction results
based on several methods in Fig. 8. The traffic flow prediction
is performed for the next 5 hours. It can be observed that
T-MGCN captures the temporal trend of traffic speed more
accurately than the other three methods. As compared to FNN
and CLTFP that output smooth prediction curves, T-MGCN
and T-GCN can well adapt to the sharp changes of traffic
speed. In addition, the prediction curve of T-MGCN could
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TABLE III

THE COMPARISON OF DIFFERENT METHODS FOR TRAFFIC SPEED PREDICTION

better align to the ground-truth curve for all the three roads
in general. It shows that T-MGCN could better capture the
spatial and semantic correlations of the road network to make
a more accurate prediction.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigate the traffic flow prediction
problem on road network. We propose T-MGCN, a novel
deep learning based model that encodes the non-Euclidean
spatial correlations and the potential semantic correlations
among roads using multiple graphs and explicitly captures
them by fusing multiple graph convolutional networks.
Then, the results are modeled by a recurrent neural network
to encode the temporal correlations, and global features
(e.g., time of day, day of week, periodicity, and events) are also
incorporated into the model. Through a series of experiments
based on real-world traffic datasets, we demonstrate that
T-MGCN could achieve better performance than the state-of-
the-art baselines.

In the future, we will extend our work from the following
directions. First, most traffic flow prediction models tend
to learn the general traffic patterns. However, the traffic

conditions could change sharply in a few hours, which are
usually caused by abnormal events (e.g., traffic accidents,
concerts, etc.). We will extend our method to learn the
correlations between abnormal events and traffic conditions.
Second, we will extend our method for multi-step sequential
traffic flow prediction.
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